Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination
نویسندگان
چکیده
Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4(+) T cells but, most importantly, they primed cytotoxic CD8(+) T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer.
منابع مشابه
Monitoring the efficacy of dendritic cell vaccination by early detection of 99mTc-HMPAO-labelled CD4+ T cells
DC vaccines have been used to induce tumour-specific cytotoxic T cells . However, this approach to cancer immunotherapy has had limited success. To be successful, injected DCs need to migrate to the LNs where they can stimulate effector T cells . We and others have previously demonstrated by MRI that tumour antigen-pulsed-DCs labelled ex vivo with superparamagnetic iron oxide nanoparticles migr...
متن کاملInfluence of synthetic superparamagnetic iron oxide on dendritic cells
BACKGROUND This study investigated the influence of synthetic superparamagnetic iron oxide (SPIO) on dendritic cells and provides a possible method for labeling these cells. METHODS SPIO nanoparticles were prepared, and their morphology and magnetic properties were characterized. The particles were endocytosed by dendritic cells generated from mouse bone marrow. Labeling efficiency and cellul...
متن کاملMagnetoliposomes open up new horizons as MRI contrast agents
Introduction High resolution MRI has a low sensitivity for the visualization of low cell numbers in vivo. This is circumvent by the internalization of high concentrations of superparamagnetic iron oxide particles resulting in potential cytotoxic effects or affecting cell biology like differentiation, formation of ROS etc. [1]. In addition, the ability to monitor iron oxide labelled cells in viv...
متن کاملThe effects of iron oxide incorporation on the chondrogenic potential of three human cell types
Non-invasive monitoring of living cells in vivo provides an important tool in the development of cell-based therapies in cartilage tissue engineering. High-resolution magnetic resonance imaging (MRI) has been used to monitor target cell populations in vivo. However, the side-effects on cell function of the labelling reagents, such as superparamagnetic iron oxide (SPIO), are still unclear. This ...
متن کاملInvestigation of Combination Effect Between 6 MV X-Ray Radiation and Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles on U87-MG Cancer Cells
Background: Radiosensitization using nanoparticles is proposed as a novel strategy for treatment of different cancers. Superparamagnetic iron oxide nanoparticles (SPIONs) have been reported to enhance effects of radiotherapy in several researches. Objective: The objective of this research is to investigate the radiosensitization properties of polyglycerol coated SPIONs (PG-SPIONs) on U87-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011